17 research outputs found

    Monocyte mitochondrial dysfunction, inflammaging, and inflammatory pyroptosis in major depression

    Get PDF
    BACKGROUND: The macrophage theory of depression states that macrophages play an important role in Major Depressive Disorder (MDD). METHODS: MDD patients (N = 140) and healthy controls (N = 120) participated in a cross-sectional study investigating the expression of apoptosis/growth and lipid/cholesterol pathway genes (BAX, BCL10, EGR1, EGR2, HB-EGF, NR1H3, ABCA1, ABCG1, MVK, CD163, HMOX1) in monocytes (macrophage/microglia precursors). Gene expressions were correlated to a set of previously determined and reported inflammation-regulating genes and analyzed with respect to various clinical parameters. RESULTS: MDD monocytes showed an overexpression of the apoptosis/growth/cholesterol and the TNF genes forming an inter-correlating gene cluster (cluster 3) separate from the previously described inflammation-related gene clusters (containing IL1 and IL6). While upregulation of monocyte gene cluster 3 was a hallmark of monocytes of all MDD patients, upregulation of the inflammation-related clusters was confirmed to be found only in the monocytes of patients with childhood adversity. The latter group also showed a downregulation of the cholesterol metabolism gene MVK, which is known to play an important role in trained immunity and proneness to inflammation. CONCLUSIONS: The upregulation of cluster 3 genes in monocytes of all MDD patients suggests a premature aging of the cells, i.e. mitochondrial apoptotic dysfunction and TNF "inflammaging", as a general feature of MDD. The overexpression of the IL-1/IL-6 containing inflammation clusters and the downregulation of MVK in monocytes of patients with childhood adversity indicates a shift in this condition to a more severe inflammation form (pyroptosis) of the cells, additional to the signs of premature aging and inflammaging

    Increased human defensine levels hint at an inflammatory etiology of bisphosphonate-associated osteonecrosis of the jaw: An immunohistological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human β-defensins (hBD) are antimicrobial peptides that are an integral part of bone innate immunity. Recently, it could be shown that expression of hBD-1, -2 and -3 were upregulated in cases of osteomyelitis of the jaws. In order to gain insight into the possible impairment of hBD metabolism in bisphosphonate-associated osteonecrosis of the jaws (BONJ), the present exploratory study was designed so as to determine the qualitative and quantitative expression of afore mentioned hBDs in BONJ and infected osteoradionecrosis (ORN), both of which represent inflammatory bone diseases.</p> <p>Methods</p> <p>Bone samples were collected from patients with BONJ (n = 20) and ORN (n = 20). Non-infected healthy bone samples (n = 20) were included as controls. Immunohistological staining in an autostainer was carried out by the (Strept-ABC)-method against hBD-1,-2,-3. Specific positive vs. negative cell reaction of osteocytes (labeling index) near the border of bony resection was determined and counted for quantitative analysis. Number of vital osteocytes vs. empty osteocytes lacunae was compared between groups.</p> <p>Results</p> <p>hBD-1,-2 and -3 could be detected in BONJ as well as ORN and healthy bone samples. Immunoreactivity against hBD-2 and -3 was significantly higher in BONJ than in ORN and healthy jaw bone samples. Number of empty osteocyte lacunae was significantly higher in ORN compared with BONJ (<it>P </it>= 0.001).</p> <p>Conclusion</p> <p>Under the condition of BONJ an increased expression of hBD-1,-2,-3 is detectable, similarly to the recently described upregulation of defensins in chronically infected jaw bones. It remains still unclear how these findings may relate to the pathoetiology of these diseases and whether this is contributing to the development of BONJ and ORN or simply an after effect of the disease.</p

    Abrasive cytohistology of squamous epithelial lesions

    No full text
    Objective: To describe a method to retrieve cellular and tissue elements of oral squamous epithelium obtained by abrasive methods and to conduct investigations by cytohistology. Method: We developed a special gelatine pocket suitable for paraffin embedding of sparse material obtained from brush biopsies (BBs). This was subjected to combined evaluation of a cytological (smear) and histological examination of the ‘tissue sections’ – referred as cytohistology. Four diagnostic categories were applied for evaluation. Other special diagnostic methods were also applied in addition to recording dysplasia. Results: A total of 51, 755 BBs from suspicious lesions of the oral mucosa (mostly oral potentially malignant disorders – OPMD) were evaluated for the presence of carcinoma or dysplasia; in all, 1.7% were positive, 78.2% were negative for any epithelial atypia, 16.8% atypical and 3.3% inadequate. All BBs also had cytohistological evaluation. A ‘positive’ diagnosis by cytohistology was a reliable indicator of dysplasia or carcinoma, requiring further incisional/excisional biopsy. In the ‘atypical’ category, a variety of lesions were found, about half being dysplasia or carcinoma. This category challenges the clinician for further clinical, therapeutic and/or excisional examination. In ‘negative’ cases with persistence of the lesion, a re-examination in 1-year sequence is recommended. Conclusion: Cytohistology of material derived by abrasive methods allows earlier detection of dysplasia/carcinoma. A number of additional oncological and non-oncological findings make this method a valuable non-invasive diagnostic procedure for oral mucosal lesions

    Genomic aberrations of MDM2, MDM4, FGFR1 and FGFR3 are associated with poor outcome in patients with salivary gland cancer

    No full text
    Fibroblast growth factor receptor 1 and 3 (FGFR1, FGFR3) impact on tissue homoeostasis, embryonic development and carcinogenesis. Murine double minute protein 4 (MDM4) and mouse double minute 2 homologue (MDM2) are regulators of p53-protein and may be the origin of an apoptosis overpowering cascade. A collective of 266 carcinomas of salivary glands were investigated for MDM2, MDM4, FGFR1 and FGFR3 aberrations by fluorescence in situ hybridization (FISH). The results were matched with clinicopathological parameters and with expression of PTEN and p53. MDM2 gene amplification (n = 9) and chromosomal aberrations (trisomy, n = 47; high polysomy, n = 7) are linked to high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.001), advanced tumour size (P = 0.013) and stage (P < 0.001), gender (P = 0.002) and age (P = 0.001). MDM4 gene amplification (n = 19) and chromosomal aberrations (trisomy, n = 34; high polysomy, n = 31) are correlated to high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.008), advanced tumour size (P = 0.039), stage (P = 0.004) and loss of PTEN (P < 0.001). Only, high-grade malignancy (P < 0.001), lymph node metastasis (P = 0.036) and advanced tumour stage (P = 0.025) are associated with FGFR3 amplification (n = 1) or chromosomal aberrations (low polysomy, n = 61; high polysomy, n = 55) but not with MDM4 alterations. FGFR1 amplifications (n = 5) and chromosomal aberrations (trisomy, n = 38; high polysomy, n = 30) are associated with high-grade malignancy (P < 0.001), advanced tumour size (P = 0.026) and stage (P = 0.004), gender (P = 0.016) and age (P = 0.023). Aberrations of MDM2, MDM4, FGFR1 and FGFR3 correlate with aggressive tumour growth and nodal metastasis. MDM2 (P < 0.001), MDM4 (P = 0.005) and FGFR3 (P = 0.006) alterations are associated with worse overall survival of patients with salivary gland cancer

    Development of MDS in Pediatric Patients with GATA2 Deficiency: Increased Histone Trimethylation and Deregulated Apoptosis as Potential Drivers of Transformation

    No full text
    GATA2 deficiency is a heterogeneous, multisystem disorder associated with a high risk of developing myelodysplastic syndrome (MDS) and the progression to acute myeloid leukemia. The mechanisms underlying malignant transformation in GATA2 deficiency remain poorly understood, necessitating predictive markers to assess an individual’s risk of progression and guide therapeutic decisions. In this study, we performed a systematic analysis of bone marrow biopsies from 57 pediatric MDS patients. Focusing on hematopoiesis and the hematopoietic niche, including its microenvironment, we used multiplex immunofluorescence combined with multispectral imaging, gene expression profiling, and multiplex RNA in situ hybridization. Patients with a GATA2 deficiency exhibited a dysregulated GATA2 transcriptional network. Disease progression (GATA2-EB, n = 6) was associated with increased GATA2 mRNA levels, restored expression of the GATA2 target EZH2, and increased H3K27me3. GATA2-EB was further characterized by the high expression of the anti-apoptotic protein BCL2, a feature absent in children with a GATA2 deficiency and refractory cytopenia of childhood (GATA2-RCC, n = 24) or other pediatric MDS subgroups (RCC, n = 17; MDS-EB, n = 10). The multispectral imaging analysis of additional BCL2 family members revealed significantly elevated Mediators of Apoptosis Combinatorial (MAC) scores in GATA2-EB patients. Taken together, our findings highlight the potential drivers of disease progression in GATA2 deficiency, particularly increased histone trimethylation and dysregulated apoptosis. Furthermore, upregulated BCL2 and EZH2 and increased MAC scores provide a strong rationale for the use of venetoclax and azacitidine in therapeutic regimens for GATA2-EB
    corecore